General Information of SAKAI's Catalyst

Sakai Chemical Industry Co.,LTD. 29 Jan.,2020

Contents

- 1. Corporate Profile
- 2. Information of De-NOx Catalyst

3. Delivery Record

1. Corporate Profile

- 1-1. Profile
- 1-2. Certificate
- 1-3. Technology Prize
- 1-4. Network
- 1-5. Sakai Division
- 1-6. Onahama Division
- 1-7. Semboku Works
- 1-8. Products
- 1-9. History of TiO₂ & Catalyst Division

1-1. Profile

Foundation	1918
Capital	JPY21.8Billion
Head Office	Osaka
Branch	Tokyo
Works	Osaka(Sakai), Fukushima(Onahama)

Listed on 1st section of TOKYO STOCK EXCHAGE.

1-2. Certificate ISO 9001(2008)

1-3. Technology Prize

Development of De-NOx catalyst by NH₃-SCR

the Catalysis Society of Japan in 1989

1-4. Network

1-5. Sakai works

1-6. Onahama works

1-7. Semboku works

1-8. Products

- Titanium Dioxide
 - for paints and catalysts
- Inorganic Chemical Products
 - Barium, Strontium and Zinc Oxide
- Plastic Additives
- Electronic Materials
- Catalysts

De-NOx/De-DXNs catalysts,
photo catalysts and for chemical processing
and others

1-9. History of TiO₂& Catalyst Division

Year	Event
1935	The first manufacturer to succeed in factory production of anatase type TiO ₂ .
1963	Onahama Works was completed in Fukushima for TiO ₂ production.
1969	Semboku Works was completed in Osaka. Catalysts production was started.

2. De-NOx Catalyst

- 2-1. General Information
- 2-2. Manufacturing process of catalyst
- 2-3. Catalyst Shape
- 2-4. Applicable Range of Temperature
- 2-5. List of Honeycomb Shape & Size
- 2-6. De-NOx Reaction
- 2-7. De-DXNs Reaction
- 2-8. Characteristic Diagram on De-NOx Performance
- 2-9. Deactivation and Reactivation of Catalyst

2-1. General Information

- Sakai succeeded in developing and mass producing of de-NOx catalysts before any other parties came into the business.
- Sakai's De-NOx Catalysts now are regarded as the best among them.
- Sakai is the only De-NOx catalyst manufacturer who has TiO₂ production plant as well in the company.
- Sakai is a leading manufacturer of De-NOx Catalysts.

2-2. Manufacturing Process

2-2-1. Manufacturing Process of TiO₂

SAKAI

2-2-2. Catalyst

Capacity of production(catalyst): 3000 m³/y

SAKAI CHEMICAL

2-3. Catalyst Shape

2-3-1. Honeycomb type

2-3-2.TREFOIL-CAT

2-4. Applicable Range of Temperature

Temp (°C)	200	300	400	500	600
Tourtown	(Municipal r	efuse)			
Low temp grade		NG,LPG)			
		(LS-O	IL)		
Middle temp		_	MS-OIL)		
grade			OAL)		
		(Activated	(sludge)		
High temp grade			-	(LNG,LP	G)

2-5. List of Honeycomb Shape & Size

Shape		150mm□									
Pitch (mm)	7.4	6.0	5.0	4.2	3.7	3.3					
Cell (n×n)	20×20	25×25	30×30	35×35	40×40	45 × 45					
Opening (%)	68.9	69.0	68.1	72.7	72.5	69.7					
Surface Area per Volume (m2/m3)	442	553	660	795	908	1001					

2-6. De-NOx Reaction

2-6-1. NOx and NH3 Mole Ratio

$$4NO + 4NH_3 + O_2 \rightarrow 4N_2 + 6H_2O$$
 $NO + NO_2 + 2NH_3 \rightarrow 2N_2 + 3H_2O$
 $6NO_2 + 8NH_3 \rightarrow 7N_2 + 12H_2O$

2-6-2. Mechanism of reaction(De-NOx)

2-6-3. Reaction Kinetics for NH₃ dispersing into gas phase

- **①Diffusion of NH₃ from gas phase to catalyst surface**
- **2**Diffusion of NH₃ into catalyst pore
- **3NH**₃ adsorption on active site
- **4**NO diffusion from gas phase to adsorbed NH₃
- **⑤**Reaction of NO-NH₃ $toN_2 + H_2O$
- **©** Desorption of N_2 and H_2 O to catalyst surface
- **Diffusion** of N_2 and H_2O into gas phase

2-7. De-DXNs Reaction

2-8. Characteristic Diagramon De-NOx Performance

2-9. Deactivation and Reactivation of Catalyst

No.	Items	Washing with water	Heating
1	CaSO ₄ ,Ca(OH) ₂ ,SiO ₂	×	×
2	NH₄HSO₄ ※		Δ
3	Dust	0	×
4	Alkalis	0	×
5	Heavy Metals	×	×
6	Sintering	×	×

$$NH_3 + SO_3 + H_2O \rightarrow NH_4HSO_4$$

3. Delivery Record Classification by Pretreatment

Classification by Tempareture (After Bag Filter)

CHEMICAL

De-NOx, De-DXNs Catalyst (After Bag Filter)

No.	Place	Capacity (t/day)	Gas Volume (Nm3/h)	Catalyst Volume (m3)	Temp. (°C)	SOx (ppm)	Intlet NOx (ppm)	Outlet NOx (ppm)	Intlet DXNs (ng-TEQ)	Outlet DXNs (ng-TEQ)	Delivery	Replacement
1	Toyama	85	21000	3.0	170	25	70	40			2014	None(1year)
2	Niigata	110	34000	1.1	171	10	70	60	0.13	0.05	2014	None(1year)
3	Tokyo	144	38000	11.3	175	10	70	50	0.1	0.025	2012	None(3years)
4	Chiba	60	23000	7.3	175	5	127	60	1	0.1	2002	None(13years)
5	Saitama	53	21000	4.7	178	5	100	20	10	1	2007	None(8years)
6	Nagano	47	16000	9.6	180	10	250	50	1	0.01	2007	After 4years(1layer)
7	Gifu	56	20000	17.3	180	20	200	50	2.5	0.05	2013	None(2years)
8	Saitama	100	28000	13.0	185	15	150	115	0.3	0.02	2002	After 8years(1layer)
9	Yamagata	98	30000	9.1	190	20	180	100	1	0.1	2001	After 11years(2layers)
10	Aichi	97	30000	13.8	190	25	125	70	1	0.05	2008	After 1year(1layer)
11	Kanagawa	400	178000	29.7	200	35	100	50			1993	After 9year(2layer) Washing in water

De-DXNs Catalyst (After Bag Filter)

No.	Place	Capacity (t/day)	Gas Volume (Nm3/h)	Catalyst Volume (m3)	Temp. (℃)	SOx (ppm)	Inlet DXNs (ng-TEQ)	Outlet DXNs (ng-TEQ)	Delivery	Replacement
12	Mie	150	81000	8.6	171	26	1	0.1	2012	None(3years)
13	Wakayama	30	12000	2.3	175	7	0.23	0.05	2010	After 4years(1layer)
14	Osaka	95	53000	21.0	188	55	1	0.1	2007	None(8years)
15	Nagano	50	33000	10.4	189	5	10	1	2007	None(8years)
16	Fukuoka	61	15000	9.5	190	10	0.5	0.05	2004	None(11years)
17	Fukushima	70	31000	3.6	190	50	0.23	0.1	2006	None(9years)
18	Hiroshima	30	11000	2.7	195	20	1	0.05	2001	None(11years)